Инжекторная система подачи (впрыска) топлива бензиновых и дизельных двигателей: что такое джетроник

Устройство автомобилей

Системы питания инжекторных двигателей

Система впрыска L-Jetronic

Система впрыска L-Jetronic ( рис. 1 ) – это управляемая электроникой система многоточечного (распределенного) прерывистого впрыска топлива. Была разработана в конце 70-х годов прошлого столетия, как более технологичная и безотказная альтернатива механической системе K-Jetronic.
Сокращеное словосочетание происходит от немецкого «Luftmasse» — воздушная масса
Главные отличия системы L-Jetronic от системы K-Jetronic следующие:

  • отсутствие дозатора-распределителя и регулятора управляющего давления;
  • электромагнитное управление пусковой и рабочими форсунками;
  • наличие электронного блока управления (ЭБУ).

Поскольку отсутствует дозатор-распределитель, существенно изменена конструкция расходомера воздуха. В системах L-Jetronic примерно в 2 раза меньше давление топлива в системе и возможно отсутствие накопителя (гидроаккумулятора) бензина.
Система впрыска L-Jetronic является более совершенной в сравнении с системой K-Jetronic, повышающая экономичность двигателя, снижающая токсичность отработавших газов, улучшающая динамику автомобиля.

Каждый цилиндр двигателя имеет свою форсунку с электромагнитным управлением, впрыскивающую топливо во впускной коллектор перед впускным клапаном. Впрыск согласован с частотой вращения коленчатого вала двигателя, информация о которой передается в электронный блок управления от контакта прерывателя (системы зажигания с контактным управлением), от клеммы «1» катушки зажигания или клеммы «16» коммутатора (для бесконтактных систем зажигания).

Система впрыска L-Jetronic работает следующим образом. Топливный электронасос 5 забирает топливо из бака 1 и подает его под давлением 0,25 МПа через фильтр тонкой очистки 6 к распределительной магистрали 4, соединенной шлангами с рабочими форсунками 3 цилиндров двигателя.

Установленный с торца распределительной магистрали 4 регулятор 2 осуществляет слив излишнего топлива в бак. Этим обеспечивается циркуляция топлива в системе и исключается образование паровых пробок.
Количество впрыскиваемого топлива определяется электронным блоком управления 12 в зависимости от температуры, давления и объема поступающего воздуха, частоты вращения коленчатого вала и нагрузки двигателя, температуры охлаждающей жидкости.

Основным параметром , определяющим дозировку топлива, является объем всасываемого в цилиндры воздуха, измеряемый расходомером воздуха. Поступающий воздушный поток, преодолевая натяжение пружины, отклоняет напорную измерительную заслонку расходомера воздуха на определенный угол, который преобразуется в электрическое напряжение посредством потенциометра.
Соответствующий электрический сигнал передается на блок электронного управления, который определяет необходимое количество топлива в данный момент работы двигателя и выдает на электромагнитные клапаны рабочих форсунок импульсы времени подачи топлива.

Независимо от положения впускных клапанов форсунки впрыскивают топливо за один или два оборота коленчатого вала двигателя (за цикл или за два такта). Если впускной клапан в момент впрыска закрыт, топливо накапливается перед клапаном и поступает в цилиндр при его следующем открытии одновременно с воздухом.
Клапан добавочного воздуха 19, установленный в воздушном канале, выполненном параллельно дроссельной заслонке, подводит к двигателю добавочный воздух при холодном пуске и прогреве двигателя, что приводит к увеличению частоты вращения коленчатого вала.
Для ускорения прогрева используют повышенную частоту вращения на холостом ходу (более 1000 об/мин).

Для облегчения пуска холодного двигателя применяется электромагнитная пусковая форсунка 21, продолжительность открытия которой изменяется в зависимости от температуры охлаждающей жидкости посредством термореле 9.
Величина необходимой в данный момент времени дозы топлива вычисляется электронным блоком управления в зависимости от массы всасываемого воздуха (объем, температура, давление), температуры двигателя и режима его работы. Объем проходящего воздуха полностью определяется положением дроссельной заслонки (нагрузкой двигателя).
Объем (масса) воздуха измеряется расходомером, который не учитывает только воздух, проходящий через дополнительный канал и используемый для регулирования содержания оксида углерода в отработавших газах. О тепловом режиме двигателя дает информацию датчик температуры охлаждающей жидкости.

Информацию о нагрузочном режиме двигателя в блок электронного управления сообщает выключатель положения дроссельной заслонки (сигналы «Холостой ход», «Частичная нагрузка» и «Полная нагрузка»). Если дроссельная заслонка закрыта, двигатель работает на холостом ходу, контакты, соответствующие закрытому положению дроссельной заслонки замкнуты и в ЭБУ поступает соответствующий сигнал («Холостой ход»).
ЭБУ подает команду корректирующую количество впрыскиваемого форсунками топлива. Если дроссельная заслонка полностью открыта, что соответствует работе двигателя при полной загрузке, контакты размыкаются, и в электронный блок поступает соответствующая информация, которую последний использует для управления подачей форсунок.
Сигнал о частичной нагрузке при неполном открытии дроссельной заслонки формируется посредством потенциометра.

В системе L-Jetronic учитывается, что плотность холодного воздуха выше плотности теплого. Чем выше температура засасываемого воздуха, тем хуже наполнение цилиндров двигателя при постоянном положении дроссельной заслонки.
Температура поступающего воздуха изменяется не только с изменением температуры окружающей среды, но и с изменением температуры в подкапотном пространстве. Нормальная температура в подкапотном пространстве примерно 50 ˚С.

Информация о температуре воздуха поступает от датчика, встроенного в расходомер воздуха, в электронный блок управления (ЭБУ), определяющий дозу впрыскиваемого электромагнитными форсунками топлива.

На некоторых автомобилях устанавливают, кроме того, высотный корректор, который информирует электронный блок управления о наружном атмосферном давлении. Бόльшую часть времени двигатель работает в режиме частичных нагрузок, поэтому программа, заложенная в ЭБУ, обеспечивает минимально возможный расход топлива при допустимой концентрации вредных веществ в отработавших газах.

Обогащение смеси происходит при холодном пуске, прогреве, холостом ходе, ускорении движения, полной нагрузке. На всех перечисленных режимах, кроме режима полной нагрузки излишек топлива необходим для устойчивой работы двигателя: при холодном пуске – для большего количества легкоиспаряющихся фракций; при холостом ходе – для увеличения наполнения цилиндров в связи с большим количеством остаточных газов.
При полной нагрузке излишек топлива необходим для охлаждения двигателя за счет испарения части бензина.

Канал расходомера воздуха является дополнительным элементом в системе холостого хода L-Jetronic. В канале установлен винт качества (состава) смеси или регулирования оксида углерода. Назначение дополнительных (обводных) каналов дроссельной заслонки L-Jetronic такое же, как и в системах K-Jetronic.
В режиме принудительного холостого хода дроссельная заслонка закрыта и в блок управления идет сигнал «Холостой ход». Если при этом частота вращения коленчатого вала двигателя выше так называемой восстанавливаемой частоты вращения, впрыск топлива прекращается (по аналогии с работой экономайзера принудительного холостого хода карбюраторных двигателей). Соответственно уменьшаются расход топлива и выброс вредных веществ с отработавшими газами.
Восстанавливаемая частота вращение (при которой вновь начинается впрыск топлива) обычно лежит в пределах 1200…17000 об/мин.

Расходомер воздуха системы L-Jetronic работает следующим образом.
Воздушный поток действует на измерительную заслонку прямоугольной формы. Заслонка закреплена на оси в специальном канале, который с помощью потенциометра преобразует поворот заслонки в напряжение, пропорциональное расходу воздуха.
Потенциометр представляет собой, как правило, цепочку сопротивлений, включенных параллельно контактной дорожке. Действие воздушного потока на измерительную заслонку уравновешивается пружиной.

Для гашения колебаний, вызванных пульсациями воздушного потока и динамическими воздействиями, характерными для автомобиля, особенно на плохих дорогах, в расходомере имеется демпфер со специальной пластиной. Пластина выполнена как единое целое с измерительной заслонкой. Резкие перемещения измерительной заслонки становятся невозможными из-за действии на пластину усилия воздуха, сжимаемого в демпферной камере.

На входе в расходомер встроен датчик температуры поступающего воздуха, а в верхней части расходомера расположен обводной канал с винтом качества (состава) смеси.

Модернизации системы L-Jetronic

Система впрыска L-Jetronic пережила несколько модернизаций и оказалась работоспособной вплоть до уровня экологических требований EURO-III включительно.
Тем не менее, постепенно она была заменена более совершенными системами впрыска, в том числе работающими на основе информации от датчиков массового расхода воздуха.

Первой модернизацией системы L-Jetronic является система впрыска LE-Jetronic (LE-J), в которой изменена в основном электрическая схема электронного блока управления, при этом число контактов в разъеме сокращено с 35 до 25.

Система LE-2J отличается от системы LE-J улучшенной системой пуска и сокращенной подачей топлива.

Читать еще:  Вариаторная коробка передач cvt и cvt xtronic: фотообзор и отзывы

Система LE-3J работает на основе цифрового кода и с электронным блоком, объединенным с расходомером воздуха.

Система LE-4J отличается от системы LE-3J отсутствием пусковой форсунки, термореле и клапана добавочного воздуха.

Система LH-Jetronic отличается от системы LE-Jetronic главным образом измерителем расхода воздуха и также представляет собой систему прерывистого впрыска топлива низкого давления, в которой электронный блок управления (цифровая микроЭВМ) приводит соотношения воздуха и топлива в соответствие с нагрузкой и частотой вращения коленчатого вала двигателя.

Система впрыска L-Джетроник. Устройство и принцип действия

Система впрыска L-Джетроник является одной из первых систем электронного впрыска топлива.

Установленный с торца распредели­тельной магистрали 4, регулятор давления топлива 5 в системе поддер­живает постоянное давление впрыска и осуществляет слив излишнего топлива в бак. Этим обеспечивается циркуляция топлива в системе и исключается образование паровых пробок.

Основу системы составляет электронный блок управления 6 (микро ЭВМ). Количество впрыскиваемого топлива определяемого временем открытия электромагнитной форсунки, зависит от сигнала подаваемого блоком управления.

В блок управления поступает информация:

  • о частоте вращения коленчатого вала от индукционного датчика прерывателя-распределителя 20;
  • о температуре двигателя от датчика температуры охлаждающей жидкости 23;
  • о качестве сгорания топливовоздушной смеси от кислородного датчика (лямбда-зонда) 24, расположенного в выпускной системе двигателя;
  • о нагрузке двигателя от датчика расходомера воздуха 8;
  • о степени открытия дроссельной заслонки от датчика-выключателя дроссельной заслонки 7.

Основным параметром, определяющим дозировку топлива, является объем всасываемого воздуха, измеряемый расходомером воздуха. Поступающий воздушный поток отклоняет напорную измерительную заслонку расходомера воздуха, преодолевая усилие пружины, на опреде­ленный угол, который преобразуется в электрическое напряжение по­средством потенциометра. Соответствующий электрический сигнал передается на блок электронного управления, который определяет необ­ходимое количество топлива в данный момент работы двигателя и выдает на электромагнитные клапаны рабочих форсунок импульсы времени подачи топлива. Топливо из распределительной магистрали поступает к электромагнитным форсункам. Независимо от положения впускных клапанов, форсунки впрыскивают топливо за один или два оборота коленчатого вала двигателя (за цикл, за два такта).

Если впускной клапан в момент впрыска закрыт, топливо накапли­вается в пространстве перед клапаном и поступает в цилиндр при следующем его открытии одновременно с воздухом.

Клапан дополнительной подачи воздуха 14, установ­ленный в воздушном канале, выполненном параллельно дроссельной заслонке, подводит к двигателю добавочный воздух при холодном пуске и прогреве двигателя, что приводит к увеличению частоты вращения коленчатого вала. Для ускорения прогрева используются повышен­ные обороты холостого хода (более 1000 об/мин).

Для облегчения пуска холодного двигателя применяется электромагнитная пус­ковая форсунка 17, продолжительность открытия которой изменяется в зависимости от температуры охлаждающей жидкости.

Рис. Электронная система впрыска L-Джетроник:
1 – замок зажигания; 2 – топливный бак; 3 – регулятор давления; 4 – топливопровод обратного слива; 5 – трубопровод подвода разрежения; 6 – распределительная магистраль; 7 – топливный насос; 8 – топливный фильтр; 9 – рабочая электромагнитная форсунка; 10 – блок цилиндров двигателя; 11 – температурный датчик включения пусковой форсунки; 12 – датчик температуры охлаждающей жидкости; 13 – прерыватель-распределитель; 14 – потенциометр дроссельной заслонки; 15 – блок управления; 16 – высотный корректор; 17 – блок реле; 18 – расходомер воздуха; 19 – подвод воздуха; 20 – винт качества смеси (СО); 21 – винт регулировки частоты вращения коленчатого вала; 22 – клапан добавочного воздуха; 23 – пусковая форсунка

При запуске холодного двигателя в цилиндры поступает повышенное количество топлива, в то время как дроссельная заслонка прикрыта и воздуха для работы двигателя недостаточно. В это время по сигналу блока управления открывается клапан дополнительной подачи воздуха, подающий воздух во впускной трубопровод, минуя дроссельную заслонку, что обеспечивает устойчивую работу двигателя во время прогрева.

Особенности и разновидности систем подачи топлива современных двигателей внутреннего сгорания

В каждом современном автомобиле есть система подачи топлива. Ее предназначение заключается в подаче топлива из бака в мотор, его фильтрации, а также образовании горючей смеси с последующим ее поступлением в цилиндры ДВС. Какие бывают виды СПТ и в чем заключается их отличия – об этом мы расскажем ниже.

Общие сведения

Как правило, большая часть систем впрыска схожи между собой, принципиальное различие может заключаться в смесеобразовании.

Основные элементы топливных систем, вне зависимости от того, о бензиновых или дизельных двигателях идет речь:

  1. Бак, в котором хранится горючее. Бак представляет собой емкость, оснащенную насосным устройством, а также фильтрующим элементом для очистки горючего от грязи.
  2. Топливные магистрали представляют собой набор патрубков и шлангов, предназначенный для подачи топлива из бака в двигатель.
  3. Узел смесеобразования, предназначенный для образования горючей смеси, а также дальнейшей ее передачи в цилиндры, в соответствии с тактом работы силового агрегата.
  4. Управляющий модуль. Он используется в инжекторных моторах, это связано с необходимостью контроля различных датчиков, клапанов и форсунок.
  5. Сам насос. Как правило, в современных авто применяются погружные варианты. Такой насос представляет собой небольшой по размерам и мощности электромотор, подключенный к жидкостному насосу. Смазка устройства реализуется с помощью топлива. Если в бензобаке будет менее пяти литров горючего, это может привести к поломке мотора.

СПТ на моторе ЗМЗ-40911.10

Особенности топливного оборудования

Для того, чтобы отработанные газы меньше загрязняли окружающую среди, автомобили оборудуются каталитическими нейтрализаторами. Но со временем стало понятно, что их использование является целесообразным только в том случае, если в двигателе образуется качественная горючая смесь. То есть если в образовании эмульсии имеются отклонения, то эффективность использования катализатора значительно снижается, именно поэтому со временем производители авто перешли с карбюраторов на инжекторы. Тем не менее, их эффективность также была не особо высокой.

Чтобы система могла в автоматическом режиме корректировать показатели, впоследствии в нее был добавлен модуль управления. Если помимо каталитического нейтрализатора, а также кислородного датчика, используется блок управления, это выдает довольно неплохие показатели.

Какие преимущества характерны для таких систем:

  1. Возможность увеличения эксплуатационных характеристик силового агрегата. При правильной работе мощность двигателя может быть выше 5% заявленной производителем.
  2. Улучшение динамических характеристик авто. Инжекторные моторы достаточно чувствительные по отношению к изменению нагрузок, поэтому они могут самостоятельно корректировать состав горючей смеси.
  3. Образованная в правильных пропорциях горючая смесь сможет значительно снизить объем, а также токсичность выхлопных газов.
  4. Инжекторные моторы, как показала практика, отлично запускаются при любых погодных условиях, в отличие от карбюраторов. Разумеется, если речь не идет о температуре -40 градусов (автор видео – Сергей Морозов).

Устройство инжекторной системы подачи топлива

Теперь предлагаем ознакомиться с устройством инжекторной СПТ. Все современные силовые агрегаты оборудуются форсунками, их число соответствует количеству установленных цилиндров, а между собой эти детали соединяются с помощью рампы. Само горючее в них содержится под невысоким давлением, которое создается благодаря насосному устройству. Объем поступающего топлива зависит от того, как долго открыта форсунка, а это, в свою очередь, контролируется управляющим модулем.

Для корректировки блок получает показания с различных контроллеров и датчиков, расположенных в разных частях автомобиля, предлагаем ознакомиться с основными устройствами:

  1. Расходомер или ДМРВ. Его предназначение заключается в определении наполненности цилиндра двигателя воздухом. Если в системе имеются неполадки, то его показания блок управления игнорирует, а для формирования смеси использует обычные данные из таблицы.
  2. ДПДЗ – положения дросселя. Его назначение заключается в отражении нагрузки на мотор, которая обусловлена положением дроссельной заслонки, оборотами мотора, а также цикловым наполнением.
  3. ДТОЖ. Контроллер температуры антифриза в системе позволяет реализовать управления вентилятором, а также произвести регулировку подачи горючего и зажигания. Разумеется, все это корректирует блок управления, основываясь на показаниях ДТОЖ.
  4. ДПКВ – положения коленвала. Его назначение заключается в синхронизации работы СПТ в целом. Устройство осуществляет расчет не только оборотов силового агрегата, но и положения вала в определенный момент. Само по себе устройство относится к полярным контроллерам, соответственно, его поломка приведет к невозможности эксплуатации автомобиля.
  5. Лямбда-зонд или кислородный датчик. Он используется для определения объема кислорода в выхлопных газах. Данные от этого устройства поступают на управляющий модуль, который, основываясь на них, производит корректировку горючей смеси (автор видео – Avto-Blogger.ru).
Читать еще:  Подходящие масла для автомобиля mitsubishi asx: какое же выбрать

Виды систем впрыска на бензиновых ДВС

Что такое Джетроник, какие бывают виды СПТ бензиновых двигателей?

Предлагаем более подробно ознакомиться с вопросом разновидностей:

  1. СПТ с центральным впрыском. В данном случае бензин подача бензина реализуется благодаря форсункам, находящимся во впускном коллекторе. Так как форсунка используется только одна, такие СПТ также называются моовпрысками. В настоящее время такие СПТ не актуальны, поэтому в более современных авто они попросту не предусмотрены. К основным достоинствам таких систем относятся простота эксплуатации, а также высокая надежность. Что касается минусов, то это пониженная экологичность мотора, а также довольно высокий расход горючего.
  2. СПТ с распределенным впрыском или К-Джетроник. В таких узлах предусматривается подача бензина отдельно на каждый цилиндр, который оборудован форсункой. Сама горючая смесь формируется во впускном коллекторе. На сегодняшний день большая часть силовых агрегатов оборудуются именно такими СПТ. К их основным достоинствам можно отнести довольно высокую экологичность, приемлемый расход бензина, а также умеренные требования по отношению к качеству потребляемого бензина.
  3. С непосредственным впрыском. Такой вариант считается одним из наиболее прогрессивных, а также совершенных. Принцип действия данной СПТ заключается в прямом впрыске бензина в цилиндр. Как показывают результаты многочисленных исследований, такие СПТ дают возможность добиться наиболее оптимального и качественного состава топливовоздушной смеси. Причем на любом этапе работы силового агрегата, что позволяет значительно улучшить процедуру сгорания смеси и во многом повысить эффективность работы ДВС и его мощность. Ну и, разумеется, снизить объем отработавших газов. Но нужно учитывать, что такие СПТ имеют и свои недостатки, в частности, более сложную конструкцию, а также высокие требования к качеству используемого бензина.
  4. СПТ с комбинированным впрыском. Данный вариант является, по сути, результатом объединения СПТ с распределенным и непосредственным впрыском. Как правило, он используется для того, чтобы снизить объем токсичных веществ, вбрасываемых в атмосферу, а также отработанных газов. Соответственно, используется он для повышения показаний экологичности мотора.
  5. Система L-Джетроник еще использовалась в бензиновых двигателях. Это система попарного впрыска топлива.

Фотогалерея «Разновидности бензиновых систем»

Виды систем впрыска дизельных ДВС

Основные виды СПТ в дизельных двигателях:

  1. Насос-форсунки. Такие СПТ используются для подачи, а также дальнейшего впрыска образованной эмульсии под высоким давлением с помощью насос-форсунок. Основной особенностью таких СПТ является то, что насос-форсунки выполняют опции образования давления, а также непосредственно впрыска. Такие СПТ имеют и свои недостатки, в частности, речь идет о насосе, оборудованном специальным приводом постоянного тип от распределительного вала силового агрегата. Этот узел является не отключаемым, соответственно, он способствует повышенному износу конструкции в целом.
  2. Именно из-за последнего недостатка большинство производителей отдают предпочтение СПТ типа Common Rail или аккумуляторного впрыска. Такой вариант считается более совершенным для многих дизельных агрегатов. СПТ имеет такое название в результате использования топливной рамы – основного элемента конструкции. Рампа используется одна для всех форсунок. В данном случае подача топлива осуществляется к форсункам от самой рампы, она может называться аккумулятором повышенного давления.
    Подача горючего осуществляется в три этапа – предварительный, основной, а также дополнительный. Такое распределение дает возможность снизить шум и вибрации при работе силового агрегата, сделать его работу более эффективной, в частности, речь идет о процессе возгорания смеси. Кроме того, это также позволяет и снизить объем вредоносных выбросов в окружающую среду.

Вне зависимости от вида СПТ, дизельные агрегаты тоже управляются с помощью электронных либо механических устройств. В механических вариантах устройства контролируют уровень давления и объема составляющих смеси и момента впрыска. Что касается электронных вариантов, то они позволяют обеспечить более эффективное управление силовым агрегатом.

Видео «Управление системой впрыска топлива»

Как производится управления работой СПТ – наглядный урок представлен в ролике ниже (автор видео – Михаил Нестеров).

Виды и особенности работы систем впрыска бензиновых двигателей

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления — обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска — осуществляет импульсную подачу бензина во впускной коллектор двигателя.
  • Дроссельная заслонка — выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления — состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Читать еще:  Обзор сигнализации starline a91 (старлайн а91), инструкция по эксплуатации

Схема работы системы с распределенным впрыском

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Схема работы системы непосредственного впрыска

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

  • Топливный насос высокого давления.
  • Регулятор давления топлива.
  • Топливная рампа.
  • Предохранительный клапан (установлен на топливной рампе для защиты элементов системы от повышения давления больше допустимого уровня).
  • Датчик высокого давления.
  • Форсунки.

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

  • Послойное — реализуется на малых и средних оборотах двигателя. Воздух подается в камеру сгорания на большой скорости. Топливо впрыскивается по направлению к свече зажигания и, смешиваясь на этом пути с воздухом, воспламеняется.
  • Стехиометрическое. При нажатии на педаль газа происходит открытие дроссельной заслонки и осуществляется впрыск топлива одновременно с подачей воздуха, после чего смесь воспламеняется и полностью сгорает.
  • Гомогенное. В цилиндрах провоцируется интенсивное движение воздуха, при этом на такте впуска происходит впрыск бензина.

Непосредственный впрыск топлива в бензиновом двигателе — наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Инжекторная система подачи (впрыска) топлива бензиновых и дизельных двигателей: что такое джетроник

Впервые автоматическое электронное управление впрыском топлива на автомобильных двигателях было реализовано с помощью системы «KE-Jetronic». Хотя эта система, как и ее прототип «K-Jetronic», является механической системой непрерывного распределенного по цилиндрам впрыска бензина через гидромеханические форсунки закрытого типа, но управление качеством приготовляемой топливовоздушной смеси в системе «KE-Jetronic» чисто электронное.

1. Концепция системы

Реализовать в механической системе впрыска смесеобразование, близкое к оптимальному, можно с использованием известной зависимости количества впрыскиваемого бензина от рабочего давления со стороны топливоподачи. Указанная зависимость частично используется в системе «K-Jetronic», где при запуске холодного двигателя (ДВС) срабатывает регулятор прогрева. Для расширения функций этого устройства в его конструкцию вмонтирована вакуумная камера, соединенная шлангом с задроссельной зоной впускного коллектора. Это позволяет реализовать управление процессом смесеобразования при некотором изменении нагрузки двигателя. Но, как и в системах зажигания с вакуумным регулятором опережения, здесь имеет место низкая точность и ограничение диапазона регулирования.

Устранить эти недостатки механической системы можно внедрени ем в нее электронного управления качеством ТВ-смеси. Модернизированная таким способом механическая система впрыска бензина получила наименование «KE-Jetronic» (индекс Е — от eLektronic).

Система «KE-Jetronic», как и ее прототип (система «K-Jetronic»), относится к механическим системам непрерывного распределенного (многоточечного) впрыска бензина, но не с механическим, а с электронным управлением качественным составом топливовоздушной (ТВ) смеси и не на прогреве, а на всех возможных режимах работы ДВС.

Для реализации такого электронного управления в состав системы «KE-Jetronic» дополнительно включены четыре новых устройства (рис. 1):

электрогидравлический задатчик давления (ЭГЗД) 2, мембранный регулятор давления (МРД) 3, расходомер воздуха (РВП) с потенциометрическим датчиком 11 положения ротаметра 8 и электронный блок управления впрыском (ЭБУ- В) 16. Исключен из системы регулятор прогрева, а дозатор-распределитель 1 имеет несколько иную конструкцию.

В зависимости от типа автомобильного двигателя входными датчиками для ЭБУ- В могут являться от 4-х до 11-ти различных преобразователей неэлектрических воздействий в электрические сигналы. Например, в системе «KE-III-Jetronic» для автомобилей «Audi-80/90» (рис. 2) таких преобразователей десять:

датчик температуры двигателя (ДТД); датчик краевого положения дроссельной заслонки (ДПД); датчик высоты над уровнем моря (ДУМ); датчик нагрузки двигателя (ДНД) по угловому положению ротаметра в расходомере воздуха; датчик частоты вращения и положения коленвала ДВС (ДХ-датчик Холла в системе зажигания); датчик начала отсчета (ДНО); датчик концентрации кислорода (ДКК); датчик включения автоматической коробки передач (ДКП); датчик режима холостого хода (ДХХ), датчик включения кондиционера (ДКД).

Основное назначение всех перечисленных устройств — обеспечить электронное автоматическое управление процессом смесеобразования в механической системе впрыска на всех режимах ее работы. Этим достигается повышение таких эксплуатационных показателей системы как быстродействие и точность исполнения функций регулирования.

2. Электрогидравлический задатчик давления (ЭГЗД)

Изменение количества распыленного бензина с помощью форсунки закрытого типа (после того как она откроется) всегда является следствием изменения давления внутри форсунки. Это давление называется давлением впрыска и в механических системах может управляться как с целью изменения количества впускаемой в цилиндры ТВ-смеси, так и с целью изменения ее качественного состава. При работе двигателя количество подаваемой ТВ-смеси регулируется дроссельной заслонкой (от водительской педали акселератора), а качество — автоматической системой управления. В системе «KE-Jetronic» приготовление ТВ-смеси и управление ее количеством реализуются так же, как и в системе «K-Jetronic», а автоматическое управление качеством — с помощью электрогидравлического задатчика давления (ЭГЗД).

Этот задатчик (см. рис. 1) входит в состав дозатора-распределителя 1 и представляет собой бензиновый жиклерный клапан с электрически управляемой пропускной способностью жиклера 28. Электромагнитная система 29 задатчика рассчитана и сконструирована так, чтобы количество бензина, проходящего через жиклер задатчика, было пропорционально величине электрического тока Iс, протекающего по катушке электромагнита 29. Это позволяет изменять подпорное давление бензина в нижних камерах 25 дозатора-распределителя так, чтобы разность давлений дельта Р в полости поршне-щелевого вентиля (ПЩВ) 27 и в нижних камерах 25 всегда оставалась бы пропорциональной величине тока в задатчике 2. Для этой цели задатчик давления 2 своими гидравлическими каналами включен между прямой бензомагистралью 5 и нижними камерами 25. Управляя таким способом разностью между рабочим и подпорным давлением, можно достаточно точно и безынерционно управлять количеством топлива, подаваемого к форсункам, при неизменном количестве впускаемого в цилиндры воздуха.

Форсунки сообщены с верхними камерами 26 бензотрубками 10. В различных системах «КЕ» управляющий ток Iс изменяется с помощью ЭБУ-В от +Iс max до -Iс min в различных пределах (+Iс max -80 мА). Но всегда положительному значению тока (+Iс тах) соответствует закрытое состояние жиклера 28 (предел обогащения ТВ-смеси), а отрицательному значению (-Iс min) — открытое (предел обеднения до полного прекращения подачи бензина к форсункам). Значению тока Iс, близкому к нулю, соответствует штатная (установочная) пропускная способность жиклера 28, при которой система впрыска «КЕ» вырабатывает стехиометрическую ТВ-смесь и работает совместно с кислородным датчиком в режиме регулирования содержания угарного газа СО в выхлопных отработавших газах (0,9

Ссылка на основную публикацию